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Abstract-The problem of heat transfer in transient buoyancy driven flow in the neighbourhood of a 
horizontal rod of circular cross-section is investigated. The rod, which is placed in a quiescent Boussinesq 
unbounded fluid, is heated either suddenly or gradually to a constant surface temperature. The investigation 
is based on the solution of the unsteady two-dimensional conservation equations of mass, momentum and 
energy in the range of Rayleigh number 10 < Ra < 1000 while keeping F’randtl number constant at 
Pr = 0.7. Results are presented for the unsteady local and average Nusselt numbers along with some details 
of the transient temperature and velocity fields. In order to validate the method of solution employed, the 
steady-state values of average and local Nusselt numbers were also computed and compared with known 

experimental and theoretical results. The comparison shows a satisfactory agreement. 

INTRODUCTION 

THE MAIN objective of the present work is to conduct 
a theoretical investigation to the problem of transient 
buoyancy driven flow adjacent to a long horizontal 
rod placed in an infinite Boussinesq fluid. The flow 
transient occurs due to the change of the rod surface 
temperature. Transient natural convection problems 
have received considerable interest for many years, 
not only because of their fundamental nature but also 
due to the many related engineering applications rang- 
ing from nuclear reactor safety considerations to 
manufacturing systems where there is a sudden impo- 
sition of heat input. 

Most of the theoretical studies carried out so far on 
transient free convection focused on vertical flat and 
curved surfaces. The works by Goldstein and Briggs 
[l], Brown and Riley [2], and by Sammakia et al. [3] 
are only a few examples. A good survey of the previous 
experimental and theoretical studies on these prob- 
lems is given by Jaluria [4]. In most of these studies 
the boundary-layer equations were solved by using 
suitable similarity transformations; a method that 
may not be appropriate for tackling free convection 
from bluff bodies such as horizontal cylinders and 
spheres. Previous theoretical treatment of free con- 
vection from horizontal cylinders seem to be delimited 
to the steady problem rather than the transient one. 
The works by Merkin [5,6], Kuehn and Goldstein [7] 
and by Farouk and Guceri [8] are examples of this. 

Only a few theoretical investigations were found in 
the literature on the problem of transient free con- 
vection from a horizontal rod. The first one is that by 
Elliott [9] who studied the natural convection boun- 
dary-layer flow growing over a circular cylinder fol- 
lowing a sudden temperature increase from that of 
the surrounding fluid. The study was based on a series 

solution at small times for the temperature and stream 
function. The small time solution was extrapolated to 
predict the steady value of the heat transfer coefficient. 
This extrapolation process failed near the top of the 
cylinder since the boundary-layer approximations 
were invalid in that region. The approach restricts 
itself to cases in which the transient free convection 
flow starts from rest. The boundary-layer approxi- 
mations cannot be applied for the general case when 
the initial surface temperature differs from that of 
the surrounding fluid especially for moderate Grashof 
numbers. Gupta and Pop [lo] studied the effect of 
curvature on the solution obtained by Elliott [9]. They 
found that including the curvature effect in the boun- 
dary-layer equations leads to an increase in the skin 
friction as well as the heat rate from the cylinder 
surface. 

Another investigation on this problem was carried 
out by Ingham [ 1 l] who used a Fourier series approxi- 
mation for the temperature, stream function and vor- 
ticity to solve the boundary-layer limit of the govern- 
ing equations. The solution obtained was only for the 
case of a sudden temperature rise when Gr is very 
large. The solution was terminated before reaching 
the steady conditions, however, comparison with the 
small time solution obtained by Elliott [9] resulted in 
a good agreement. The distribution of the local heat 
transfer at large time was compared with the steady 
solution of Merkin [5]. The differences were small over 
all the cylinder surface except near the top where 
considerable differences were found. These differences 
were still increasing when the computations were ter- 
minated. The local heat rate was continuously 
decreasing with time in the region of the plume. The 
adequacy of the boundary-layer solution at low to 
moderate Rayleigh numbers and also the breakdown 
of the boundary-layer assumptions, even at large Ray- 
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NOMENCLATURE 

a rod radius Greek symbols 

;n 

specific heat thermal diffusivity 
function defined in equation (11) coefficient of volumetric thermal 

9 gravitational acceleration expansion 
t?” function defined in equation (1 I ) 
Gr Grashof number, gp(7’- T,)(2a)‘:v2 

h, ii local and average heat transfer 
coefficients 

Ho, H, functions defined in equation (11) 
k thermal conductivity 
Nu, Nu local and average Nusselt numbers 
Pr Prandll number, p/k 

4 rate of heat transfer per unit area 
r dimensionless radial coordinate 
Ra Rayleigh number, Gr Pr 

t dimensionless time 
T temperature 

v,> vo radial and angular velocity 
components. 

t dimensionless logarithmic radial 
coordinate, In r 

P density 

.U dynamic viscosity 

; 

kinematic viscosity 
dimensionless temperature, 
(T- T,)I(T,- T,) 

* dimensionless stream function, $‘/n 
a angular coordinate 
Y 
5 dimensionless vorticity, <‘n’/a. 

Subscripts 
f final conditions following transient phase 
s rod surface 
CC at infinite distance from the surface. 

leigh numbers, in the region of the plume were dis- 
cussed in refs. [7,9]. This breakdown occurs mainly 
because of the thick boundary layer prevailing near 
the top of the cylinder; a region that is sometimes 
referred to as the region of colliding or merging 
boundary layers. 

Experimental studies on transient free convection 
from horizontal cylinders and wires are numerous. 
Amongst the early studies is the work by Ostroumov 
[12] who used an optical technique to determine the 
variation of the thermal field near a horizontal wire 
following its temperature rise. It was found that the 
greater the heating electric power used, the sooner the 
unsteady state ends. The phenomenon of the wire 
temperature overshoot above its final steady value 
was observed and related to the delay in the fluid 
convective motion. The same problem was also inves- 
tigated by Pera and Gebhart [ 131 who described the 
mathematical difficulties in solving such a problem 
especially in the region near the top of the cylinder 
where two boundary layers merge forming the buoy- 
ant plume. In this region, no flow separation was 
observed in the experiment. 

Vest and Lawson [14] studied the same phenom- 
enon experimentally by visualizing the thermal field 
around a horizontal wire using a Mach-Zehnder 
interferometer with emphasis on the delay time 
between the sudden temperature increase and the 
beginning of the convective fluid motion. A thermal 
stability theory was used to predict the time delay 
which agreed well with the experimental values. More 
studies on the same problem were carried out by Par- 
sons and Mulligan [15]. In their work, an overshoot 

of the steady state was observed during the transient 
decay of the average Nusselt number. The transient 
period was shown to be divided into three distinct 
stages which are, pure conduction, convective tran- 
sition, and finally steady free convection. The relation- 
ship between the occurrence of the overshoot and 
Rayleigh number was also discussed. In another study 
[16], the same authors extended their investigation to 
the case of a horizontal cylinder of finite (not very 
small) diameter with emphasis on the application of 
the thermal stability theory used in refs. [14, 151 to 
high Rayleigh numbers. Recently, the transition from 
conduction to convection around horizontal wires in 
the case of a ramp excursion in internal heat gen- 
eration was studied by Faw et al. [17]. They found 
that the transition time depends on the rate of increase 
of heat generation and is independent of the wire 
diameter. Transition time was measured up to Ray- 
leigh number Ra = 3 1. 

In this work, the problem of transient buoyancy 
driven flow adjacent to a horizontal rod of circular 
cross-section placed in an unbounded fluid is inves- 
tigated in the range of Rayleigh number 10 < Ra 
< 1000 while Prandtl number is kept constant. 
The flow transient occurs due to either sudden or 
gradual increase in the rod surface temperature. 
The study is based on the solution of the conser- 
vation equations of mass, momentum and energy. 
Results are presented in the form of the variation of 
the average Nusselt number as well as the developing 
streamlines and isotherms during the transient phase. 
The overshoot phenomenon which occurred in several 
cases is discussed in some detail. 
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PROBLEM STATEMENT AND 

GOVERNING EQUATIONS 

The problem considered is that of a long horizontal 
rod of a circular cross-section placed in a quiescent 
fluid of infinite extent. The rod and the fluid have an 
initial temperature T,. The temperature of the rod 
surface is either gradually or suddenly increased to 
T,,. A buoyancy driven flow starts near the rod surface 
and develops with time until reaching the final steady 
condition. The rod is considered to be long enough 
such that the end effects can be neglected and the 
flow can be assumed two-dimensional. The viscous 
dissipation is neglected and the temperature difference 
is assumed to have a negligible effect on the fluid 
properties except for the density in the buoyancy force 
term in the momentum equation. 

Consider the line 6 = 0 to be the vertical line 
through the center 0 of the rod cross-section as shown 
in Fig. 1. Using a cylindrical coordinate system, the 
equations of motion and energy can be written in 
terms of the stream function $‘, vorticity c, and tem- 
perature T as 

1 aF, 

[ 

1 W Fo 
+- --pae+ll 

p W 1 (1) 

5’ = -V’ly (2) 
aT 1 aq aT 1 a+‘aT k 
~+~s~-~~-=-V’T 

r ar ae PC 
(3) 

where 

f’ is the time, p the density, v the kinematic viscosity, 
k the fluid thermal conductivity and c the specific heat. 
F,, and FB are the radial and angular components of 

the buoyancy force and are defined as 

F,, = pgj( T- T,) COS 6 

F. = -p&T- T,) sin 6 

where g is the gravitational acceleration and fl is the 
coefficient of volumetric thermal expansion. The vel- 
ocity components vi and v;l are related to JI’ by 

V: = l/r’ aJI’/atJ and V; = -a$‘/ar’. 

The following dimensionless quantities are now intro- 
duced 

and 

* = $‘/a, [ = -c’a2/a, r = r’/a, 

t = t’a/a*, V, = via/a, v. = f&a/a 

4 = (T- T,)/(T, - T,) 

where a = k/pc is the thermal diffusivity. Using the 
above variables in equations (l)-(3) results in 

Gr Pr2 

+-%- 

84 1 84 
zsin e+Ias~~se 1 (4) 

(I = v2* (5) 

a@ I a$ a4 I a$ a4 
z+rae~-FardB=V2qb&~ (6) 

where Pr = v/a is the Prandtl number, Gr = 
gj?(T,- T,)(2a)‘/v2 the Grashof number, and Ra = 
Gr Pr the Rayleigh number. The dimensionless vel- 
ocity components v, and vg are now defined as 

V, = l/r a$/80 and IQ, = -a$@. 

The boundary conditions for $, [ and 6 are based 
on the no-slip, impermeability and isothermal con- 
ditions on the rod surface and the ambient conditions 
far away from it. These conditions can be expressed 
as 

l/r a$/ae = a*/ar = 0, 4 = 1 at r = 1 

and 

I/r a*lae, a$/ar, 4, i --) 0 as r -+ CO. 

The conditions on the line of symmetry 0 = 0 and x 
can be expressed as 

v. = av,iae = r = a+lae = 0. 

In order to achieve a highly accurate numerical 
solution, the logarithmic radial coordinate r is used 
such that 5 = In r which transforms the governing 
equations (4k(6) to 

1 (7) FIG. 1. Coordinate system. 



It is important to mention that the term aRa/dt in 
equation (9) has a non-zero value in the case when 
the rod surface temperature increases gradually. How- 
ever, in the case of a sudden temperature increase 
aRa/at = 0 immediately following the temperature 
rise. 

In terms of the new variables, the boundary con- 
ditions can be written as 

* = a*jag = a+/atr = 0,4 = i at 5 = 0, 
eec a*/ae, e-c a*/ag,d,i-0 as [-x (lo) 

and Ra is either a constant or a known function of 
time. 

THE NUMERICAL SOLUTION 

The method used for solving the unsteady equations 
(7~(9) to obtain the time development of the velocity 
and temperature distributions in the flow field is based 
on approximating $, [ and 4 in terms of a truncated 
Fourier series following the work done by Collins and 
Dennis [18], Badr and Dennis [19] and Badr [20]. In 
the present study, the rod surface which was initially 
at temperature T,, is heated in a certain prescribed 
form such that T, is a known function of time. During 
and following this temperature change, a buoyancy 
driven flow starts near the rod and develops with time. 

For all forms of heating and provided that the rod 
surface has a uniform temperature distribution, the 
velocity and temperature fields are symmetric about 
the vertical radius (0 = 0). Following ref. [20], $, i 
and 4 can be expressed as 

$ = f f”(& t) sin n0 
“= I 

c = 5 g,(t, t) sin n6 (11) 
II= I 

C$ = iH,(L t>+ f H,(5, t) cos nfX 
II= 1 

The use of equation (11) with equations (7)-(9) results 
in the following sets of equations to be solved for the 
functions fn , g., H,, and H, 

(12) 

(13) 

,,$H, a2Ho I 
at=ayZ-Ra 

e*~~H,+Z,(~,t) (14) 

where the terms S,, Z,, and Z, are easily identifiable 
functions of 5 and t. The boundary conditions for all 
the above functions are deduced from equation (10) 
and can be expressed as 

j; = H, = ?f”/ag = 0 and Ulo = 2 at 2 = (1 

gn, H,, H,, af”/a( --$ 0 as ; + xi. 
(16) 

The following integral condition is obtained by inte- 
grating both sides of equation (12) with respect to ( 
between 5 = 0 and co and using the conditions given 
in equation (16) 

Although the differential equations (12)-(15) and the 
boundary and integral conditions are different from 
those deduced in ref. [20] to study the problem of 
laminar mixed convection from a horizontal cylinder. 
the numerical procedure used in this work is almost 
the same and therefore will not be discussed again. 

DISCUSSION OF RESULTS 

The behaviour of the velocity and thermal fields 
near the horizontal rod during and following its tem- 
perature increase from T,, to T,, is studied for mod- 
erate Rayleigh numbers (10 < Ra < 1000). Since the 
problem of a step temperature increase has been of 
major interest in many experimental investigations, it 
is considered here and this mode of heating is referred 
to as the first mode. However, a sudden change of 
temperature is unusual and may be unrealistic in prac- 
tical applications because it requires a body of infi- 
nitely small thermal capacity in addition to a step 
change in the input heat. A gradual temperature 
increase is of major interest in engineering appli- 
cations, although it has not received, so far, much 
attention either theoretically or experimentally. In this 
work, the transient phenomenon is investigated when 
the temperature increase is gradual. The simplest case 
is when the temperature increases linearly with time 
from T, to T,, during a time period tf and this mode 
is referred to as the second mode. In this mode the 
term iT@jat in the energy equation has discontinuities 
at t = 0 and tr. In the third mode, the temperature- 
time curve is a smooth one which is likely to be the 
case of practical interest. The relation between T, and 
t is considered in the simple form 

T,-T, 

T,, - T, 
(18) 

The three modes of heating are presented graphically 
in Fig. 2. 
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FIG. 2. Surface temperature change for the three modes of 
heating. 

The local and average Nusselt numbers Nu and & 
are defined such that 

- 
Nu = 2ah/k land Nu = 2aii/k (19) 

where k is the coefficient of thermal conductivity and 
h and /; are the local and average heat transfer 
coeihcients defined as 

Zn 
h = cj/(Tsf- T,), f; = (l/211) 

I 
h de (20) 

0 

where 4 is the rate of heat transfer per unit area given 

by 

4 = -k(U/W),,,. (21) 

Using the dimensionless temperature C$ together with 
the above definitions, one can easily deduce 

and 

Nu = -2[&~5/a&=~Ra/Ra~ (22a) 

- 
NU = [-i3H,/iQ,,Ra/Ra, (22b) 

where Ra, is the final steady value of the Rayleigh 
number [based on (T,,- r,)]. 

In order to verify the accuracy of the method of 
solution and the numerical computations, the 6nal - 
steady values of Nu were compared with the available 
experimental and theoretical data as can be seen in 
Fig. 3. The figure shows a small difference between 
the present results and those obtained by Kuehn and 
Goldstein [7j over most of the considered range of Ra. 
The difference between the two is 2.2% at Ra = 1000, 
however at Ra = 10 the difference reaches 14%. In 
ref. [7j, the flow is assumed to approach the cylinder 
radially and is also assumed to leave radially in the 
plume with negligible radial temperature gradient. No 
such assumptions are made in the present study. The 
comparison with the experimental correlations given 
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/ . Kuehn and Goldstein C73 

o Tsubaxhi and Mazda C2? 

A Zijnen t211 

0 Mikheyev C221 

Ro 

FIG. 3. Comparison of the steady values of the average 
Nusselt number with previous theoretical and experimental 

results. 

in refs. [21-231 as shown in Fig. 3 indicate a deviation 
as high as 18%, however, a difference of the same 
order occurs between these correlations which can be 
due to inaccuracies in the measurements. Figure 4 
shows the steady local Nusselt number distribution 
on the rod surface for Ra = 100 and 1000 together 
with the results given in ref. [7j for comparison. 

The transient decay of a following a sudden tem- 
pera ure rise is proved to be exactly the same as that 

k for t e transient conduction problem at small times 
[12,I4,15] because of the small velocities prevailing 
in the immediate neighbourhood of the rod surface. 
It was also found experimentally that the convective 
motion in this mode of heating is delayed for a certain 
period of time [ 16,171. This criterion has been used to 
check the accuracy of the small time solution obtained 
in the present work. Figure 5 shows a comparison 

4 

. 

-Present study 

Goldstein 

0 20 40 60 60 100 120 140 160 I 

8 

FIG. 4. Comparison of the steady local Nusselt number 
distribution with previous results for Ra = 100 and 1ooO. 
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FIG. 5. Comparison of the small time results with the analytical solution of the conduction problem. 

between the variation of % when Ra = 700 and 1000 
with the solution of the conduction problem as given 
in ref. [24]. The figure shows an excellent agreement 
at small times, however, the two curves deviate at 
large times due to the convective motion near the rod 
surface. 

Figure 6 shows the variation of % following sud- 
den temperature rise from T, to T,, until reaching 
steady conditions. It is clear from the figure that the 
time required to reach the final steady value of % 
decreases as Ra increases. This can be explained on 
the basis that increasing Ra tends to increase the buoy- 
ancy force accelerating the flow near the rod surface 
and accordingly decreasing the time delay until the 
start of the convective fluid motion. Following this 

motion the value of Nu increases above that of the 
corresponding conduction regime causing the known 
phenomenon of heat transfer overshoot. This 
phenomenon is clearly shown in Fig. 6 especially for 
Ra > 100, however, no significant overshoot occurs 
for the cases of Ra = 10 and 50. With the increase of 
Ra, this phenomenon occurs earlier and becomes 
more pronounced as expected. The same behaviour 
was found experimentally and reported in refs. [14- 
171 with emphasis on the delay time until the transition 
from conduction to convection dominated regime 
takes place. 

The variation of Nu with time for the second and 
third modes of heating are shown in Figs. 7 and 8 for 
the case of R = 100 and at various rates of tem- 

5.6j/ 
4.6 . 

Ro=?OO Ro=300 Ra=lOO Ra=50 Ra=lO 

3.2 - 

IL? 

24- 

1.6 - 

-. 

FIG. 6. The variation of the average Nusselt number for the first mode--cases of Ra = 10, 50, 100, 300 
and 700. 
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FIG. 7. Variation of average Nusselt number with time for the second mode--case of Ra = 100 and tf = 0.5, 
1.0,2.0 and 4.0. 

perature increase [fr = 0.5,1.0,2.0 and 4.01. Figure 7 
shows the maximum value of & to occur at t = tr at 
which there is a discontinuity in the value of a#&. 
Immediately following that time, a sharp decay occurs 
in % similar to that found in the first mode. The - 
overshoot of Nu, below its final steady value, is clearly 
shown for all heating rates considered with approxi- 
mately the same degree but takes place at different 
times as expected. The final steady value of %% is 

found to be the same in all cases. Figure 8 shows the 
maximum value of % to occur at t c if when if = OS, 
1 .O and 2.0, however, for the case tf = 4.0 the value of 
% reached a peak which is less than its final steady 
value. The variation of % in this mode is smooth, 
contrary to the first and second modes. A comparison 
between the variation of % during the transient phase 
for the three modes is shown in Fig. 9 for Ra = 500 
[rf = 1.0 in the second and third modes]. 

3.2 

2.4 

L I I I I , I 
” 2 4 6 8 IO 

t 

FIG. 8. Variation of average Nusselt number with time for the third mode--case of Au = 100 and r, = 0.5, 
1 .O. 2.0 and 4.0. 
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FIG. 9. Comparison between the transient behaviour of NU 
for the three modes of heating for the case of Ra = 500 

[tr = 1 .O for the second and third modes]. 

The time development of the local Nusselt number 
and vorticity distributions at the rod surface are 
shown in Figs. IO(a) and (b), respectively, for the first 
mode of heating when Ra = 300. As can be seen in 
Fig. 10(a), the maximum rate of local heat transfer 
occurs at the bottom of the rod (0 = 180’) while the 
minimum value occurs at the top (0 = 0) at all times. 
It is also clear that following t = 6 there is no further 
change in the Nu distribution since the thermal field 
near the rod reaches, by that time, steady conditions. 
Figure 10(b) shows a maximum vorticity near 

3.5 

3.0 

2.5 

(0 z= 90 ) and < is always positive mdicatmg no flow 
separation. The same criterion \\a:, also found at 
higher Ra values. 

The variation of’ the velocity vector field following 
iI sudden temperature rise is shown In Fig. 11 for the 
case of Ra = 100. At small timss (t == 0.5. 1.0) the 
convective motion is sensible onI1 in the neigh- 

bourhood of the rod near 0 = 90 while the fluid at 
the top and bottom of the rod is almost stagnant. As 
time reaches t - 2.0, the velocity increases at the sides 
of the rod as well as at the top and bottom signalling 
the beginning of an effective convective motion. This 
time coincides with the time of overshoot of R;2c as 

can been seen in Fig. 6. At f = 4.0. the fluid velocity 
at the top increases considerably and the fluid motion 
in the entire field becomes more developed. 

The distribution of the radial and angular velocity 
components at 0 = 90 are shown in Figs. 12(a) and 
(b), respectively, for the case of RI) = 100 at various 
times following a sudden temperature increase. Figure 

12(a) shows negative values of 1‘. which means that 
the flow is directed towards the rod, however the non- 
zero value of c(, as shown in Fig. 12(b) suggests that 
the flow is not exactly in the radial direction even at 
a large distance from the rod. Figure 12(b) also shows 

that an overshoot of z++ occurs at f = 6. Moreover, the 
velocity distribution at the immediate neighbourhood 
of the rod reaches its final steady condition much 

faster than the region far away from it. The same 
phenomenon occurred at higher values of Ra. 

however, the overshoot of I*,, occurred earlier. The 
radial velocity distribution along the centre of the 
plume (0 = 0) following a sudden temperature 
increase is shown in Fig. I.7 for the same case. The 

FIG. IO(a). The variation of the local Nusselt number distribution for the first mode of heating--case of 
Ra = 300. 
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FIG. 10(b). The variation of the vorticity distribution on the rod surface for the first mode of heating- 

case of Ra = 300. 
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FIG. 11. The velocity vector field for the case of Ra = 100 and the first mode of heating: (a) t = 0.5; 
(b) t = 1.0; (c) t = 2.0; (d) t = 4.0. 
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FIG. 12. Time variation of the radial and angular velocity components with r at 0 = 90” for the case of 
Ra = 100 and the first mode of heating : (a) radial velocity ; (b) angular velocity. 

maximum radial velocity adjacent to the rod surface 
occurred at t = 6 which is approximately the same 
time at which v0 was maximum at 0 = 90”. It seems 
that the overshoot in the upward velocity occurs in 
the entire field at the same time which is different from 
that at which the heat transfer overshoot takes place. 

The temperature variation at the centre of the 
plume is shown in Fig. 14 at different times. The figure 
shows that the thickness of the thermal layer is small 
at small times and increases significantly as t increases. 

8 

I 
1 

IYe t=l 
ow ------- 

I 
2 3 4 5 6 7 8 

FIG. 13. Time development of the radial velocity distribution FIG. 14. The temperature distribution at 0 = 0 at different 
at 0 = 0 for the case of Ra = 100 and the first mode of times following a sudden temperature rise--case of 

heating. Ra = 100. 

An overshoot in the temperature gradient at the sur- 
face is clearly shown. Figures 15 and 16 show the 
time development of streamline and isotherm patterns 
following a sudden temperature rise for the cases of 
Ra = 100 and 500. Since the velocity and thermal 
fields are symmetric about 6 = 0, only one half of the 
field is shown. At small times, the isotherms are almost 
concentric circles around the rod, confirming that the 
initial phase of heat transfers is solely by conduction 
with no convection effects. This is also clearly shown 
in Fig. 6 where the value of Nu at small time is inde- 
pendent of Ra as in the case of a transient conduction 
regime. As time increases, the isotherms move upward 
at the top of the rod (region of the plume) while 
continue adhering to it at the bottom. The streamline 
patterns plotted in the same figures show that at small 
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(b) 

(d) 

FIG. 15. The time development of the streamline and isotherm patterns for the case of Ra = 100 and 
sudden temperature rise : (a) t = 0.5 ; (b) t = 1.0 ; (c) t = 2.0 ; (d) t = 4.0 ; (e) t = 6.0; (f) t = 8.0 ; (g) 
t = 10.0. Streamlines plotted are + = 0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.8, 1.0, 1.2, 1.5,2.0,2.5, 3.0, 3.5,4.0 

and the isotherms plotted are C#J = 0.1,0.2, . . . ,0.9. 
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(e) 

Figs. 15(e)--(g) 
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Fig. 16. The time development of the streamline and isotherm patteras for the case of Ra = 500 and sudden 
tem~rature rise : (a) t = 0.5 ; (b) t = 1 ,O; (c) t = 1.5 ; (d) i = 2.0 ; (e) t = 3.0 ; ff) t = 4.0 ; (g} t = 6.0. 
Streamlines plotted are 11, = 0.1, 0.2, 0.4,0.6, 0.8, 1.0, 1.2, 1.5, 2.0, 2.5, 3.0,4.0, 5.0, 6.0, 7.0, 8.0 and the 

isotherms plotted are the same as in Fig. 15. 
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times the upward motion of the fluid layer near the 
rod surface tends to the formation of a circulating 
flow region on each side of the rod. The size of these 
regions grows with time until eventually reaching the 
steady pattern at which the fluid approaches the rod 
surface only from below. 

CONCLUSION 

The problem of transient buoyancy driven flow near 
a horizontal rod is studied for the case of two-dimen- 
sional laminar flow in the range of Rayleigh number 
of 10 < Ra < 1000. Three essential modes of heating 
are considered. In the first one the rod surface tem- 
perature increases suddenly while the temperature 
increase in the second and third modes is gradual 
according to a certain specified form. The method of 
solution was verified by comparing the final steady 
values of the average Nusselt number as well as the 
local Nusselt number distribution with the available 
theoretical and experimental data. The agreement is 
found to be satisfactory. The variations of the local 

and average heat transfer coefficients for various heat- 
ing modes are presented. The variation of the velocity 
distribution at various sections with time are also 
presented together with the streamlines and isotherms 
during the transient phase. The method used is not 
only suitable to provide solutions for the modes of 
heating considered in this work but can be applied 
also to any other mode of heating or cooling. Higher 
values of Ra are not considered here because of the 
excessive increase in computer time. 
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TRANSFERT THERMIQUE EN CONVECTION NATURELLE VARIABLE AIJTWJR 
D’UNE TIGE HORIZONTALE 

R&m&-On &die le transfert thermique en convection naturelle variable au voisinage d‘un cylindre 
horizontal. La tige qui est plact5e dans un Ruide de Boussinesq au repos et illimiti: est chaufftte soit 
brusquement soit graduellement jusqu’i une tempirature de surface constante. L’t-tude est basCe sur la 
rt%olution des iquations bidimensionnelles des bilans de masse. de quantite de mouvement et d’energie 
dans le domaine de nombre de Rayleigh t0 < Ru -c 1000 en gardant constant le nombre de Prandtl i 
Pr = O,?. Des r&sultats sont p&sent&s pour les nombres de Nusselt variables locaux ou giobaux. avec 
quelques d&ails sur les champs variables de temp&rature et de vitesse. De faGon & valider la mtthode de 
&solution employ&e, les valeurs stationnaires des nombres de Nusselt sont calcultes et romparies avec des 

r&hats expCrimentaux et thboriques connus. Cette comparaison montre un accord catisfaisant. 

W~RME~B~RGANG BEI INSTATIONARER AUFTRIEBSSTROMUNG UM EINEN 
HO~ZO~AL~N ZYLINDER 

BwDer Wiirmeiibergang bei instationiirer Auftriebsstrijmung um einen horizontalen Kreis- 
zylinder wird untersucht. Der Zylinder, der sich in einem unendlichen, ruhenden Boussinesq-Fluid befindet, 
wird entweder plijtzlich oder langsam auf eine konstante Oberflbhentemperatur aufgeheizt. Die Unter- 
suchung wird r&t Hilfe der L&&g der instationiiren, zweidimensionalen Bilanzgleichungen fiir Masse, 
Enereie und ImDuls durchrrefiihrt. Die Ravleieh-Zahl betrura dabei zwischen 10 und 1000. die Prandtl-Zahl 
war constant Pi = 0,7. Die ijrtliche und r&e kittlere insta&n&e Nussdt-Z&l wird aIs &mktion der Zeit 
dargest&t, daneben such E~n~lheit~ des Tempera&r- und G~hwindigk~ts-Feldes. Urn die Methode 
zu iiberpriifen, wurden such die station&en Werte der drtlichen und mittleren Nusselt-Zahl berechnet 
und mit bekannten experimentellen und theoretischen Ergebnissen verglichen. Die obereinstimmung ist 

zufriedenstellend. 

TE~~~O~MEH IIPM HE~A4~OHAPHOM E~ECTBEHHO-KOHBEKT~BHOM 
TEqEHM[II BO3JlE l-OPZ130HTAJIbHOl-0 CTEFXHR 

kmo'rauW+&epreHb, nob4eruertHblli B HenoneHxHyh2 HeorpamiSeHHym KHnKocTb, nHe3amio HUH 
nocreneiiH0 Harpesanca no nocro~w~oii TebfnepaTypsl noriepxHocTu. Peulankicb HecTalutoHapwble Aay- 

MepHbIeypaBHeHHff COXpaHeHHRMa~IJ,KOnHYeCfBaABH~eHHKH3HeprHH BIlpH6AHXCeHHH EyCCHHeCKaB 

AHana3oHe YHCeJI P3nen lo< Ro< lm np~ IIOCTOI~HHOM sfcne npa~A'r~K Pr= O,?. l@tW’L%meHbt 
WJIbTaTbI fUtR H~a~HOHapH~X AOK~bH~X H CpeAHHX YHCeA Hyccenbra, a TaKw(e HeKOTOpbIe 

AaHHble AJIK H~aU~O~pH~X ElOJl& TeWlepaTypbl H CKOpOCTH. &IS nOAT~p~AeHU~ FIpaBHJlbHOCTH 

sbt6opa HClIOJlb3yeMOr0 MeTOAa peUJeHHK 6bmH paUXHTaHb1 CTamiOHapiib1e 3Ha9eHHK CpeAHiiX H 

,,OKa."bHblX WCeJl HycCeJIbTa,KOTOpbte XOpOUlO COrJIaCyiOTCK C W3BeCTHbIMW 3KCnepHMeHTKJIbHblMH H 

TeOPeTHYeCKHMHAaHHbIMH. 


